10 research outputs found

    Turbulent magnetic field amplification from spiral SASI modes in core-collapse supernovae

    Full text link
    We describe the initial implementation of magnetohydrodynamics (MHD) in our astrophysical simulation code \genasis. Then, we present MHD simulations exploring the capacity of the stationary accretion shock instability (SASI) to generate magnetic fields by adding a weak magnetic field to an initially spherically symmetric fluid configuration that models a stalled shock in the post-bounce supernova environment. Upon perturbation and nonlinear SASI development, shear flows associated with the spiral SASI mode contributes to a widespread and turbulent field amplification mechanism. While the SASI may contribute to neutron star magnetization, these simulations do not show qualitatively new features in the global evolution of the shock as a result of SASI-induced magnetic field amplification.Comment: 15 pages, 7 figures, To appear in the Journal of Physics: Conference Series. Proceedings of the IUPAP Conference on Computational Physics (CCP2011

    Casemix, management, and mortality of patients receiving emergency neurosurgery for traumatic brain injury in the Global Neurotrauma Outcomes Study: a prospective observational cohort study

    Get PDF

    Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics

    No full text
    Purpose This review summarizes protein biomarkers in mild and severe traumatic brain injury in adults and children and presents a strategy for conducting rationally designed clinical studies on biomarkers in head trauma. Methods We performed an electronic search of the National Library of Medicine’s MEDLINE and Biomedical Library of University of Pennsylvania database in March 2008 using a search heading of traumatic head injury and protein biomarkers. The search was focused especially on protein degradation products (spectrin breakdown product, c-tau, amyloid-β1–42) in the last 10 years, but recent data on “classical” markers (S-100B, neuron-specific enolase, etc.) were also examined. Results We identified 85 articles focusing on clinical use of biomarkers; 58 articles were prospective cohort studies with injury and/or outcome assessment. Conclusions We conclude that only S-100B in severe traumatic brain injury has consistently demonstrated the ability to predict injury and outcome in adults. The number of studies with protein degradation products is insufficient especially in the pediatric care. Cohort studies with welldefined end points and further neuroproteomic search for biomarkers in mild injury should be triggered. After critically reviewing the study designs, we found that large homogenous patient populations, consistent injury, and outcome measures prospectively determined cutoff values, and a combined use of different predictors should be considered in future studies

    Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury

    No full text
    corecore